CURSO DE ESTADISTICA : 3ra PARTE

Estadística/Variables aleatorias

Ejemplo para definir una variable aleatoria

Una imprenta francesa necesita 10 multifuncionales impresoras de alta rendimiento. Tres impresoras son de la firma Alpha, dos son de Beta, cuatro son de Gamma y una sola de la firma Delta. Desde que las impresoras esta manejada por los clientes, ellos reportaron un funcionamiento impropio. Se ha determinado que todos las impresoras son propensas a la misma medida. Debido a la garantía, por cada accidente se envía a un técnico de mantenimiento de la cuestionada firma. El costo por las reparaciones depende del fabricante de la imprenta, donde la firma Gamma es la empresa mas barata.
Preferiblemente, el dueño el señor Printzig, realiza las reparaciones con la firma correspondiente.
Busquemos cuál es el conjunto solución para el suceso aleatorio: una impresora se daña aleatoriamente?, con que probabilidad produce el señor Printzig el menor costo?
Obtenemos el conjunto solución
Ω = {A1, A2, A3, B1, B2, G1, G2, G3, G4, D1},
donde B2 significa la impresora 2 de la firma Beta. G es el resultado de tener el costo de reparación mínimo. Cada impresora tiene la misma probabilidad de dañarse. Entonces por el principio de simetría:
P(G) = \frac {\operatorname{Numero \; de \; impresoras-G}}{\mathrm{Numero \; de \; impresoras}} = \frac {|G|} {|\Omega|} = \frac{4}{10} = 0,4 \ \;



El costo para las reparaciones que cobra cada fabricante es el siguiente:




Fabricante Alpha Beta Gamma Delta
Costo (Euros) 50 60 30 100
Ahora pensemos en cuanto debería pagar el señor Printzig por avería en promedio?. Para esto podemos ordenar los conjuntos solución con el correspondiente costo así





A1 A2 A3 B1 B2 G1 G2 G3 G4 D1
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
50 50 50 60 60 30 30 30 30 100
Ω tiene 10 soluciones y cada evento tiene una probabilidad de 1/10. Cada impresora falla entonces con una probabilidad de 1/10. El costo de reparación promedio sería
50 \cdot  \frac{1}{10} + 50 \cdot  \frac{1}{10} + 50 \cdot  \frac{1}{10} + 60 \cdot  \frac{1}{10} + 60 \cdot  \frac{1}{10} + ... + 100 \cdot  \frac{1}{10}  \;
=50 \cdot  \frac{3}{10} + 60 \cdot  \frac{2}{10} + 30 \cdot  \frac{4}{10} + 100 \cdot  \frac{1}{10} \;
= \frac{150}{10} + \frac{120}{10} + \frac{120}{10}+ \frac{100}{10} = \frac{490}{10} = 49 \text{ Euro} \;
Hemos ahora construido una variable aleatoria y en ella hemos ordenado todos los resultados de Ω en un número.
El promedio podríamos calcularlo desde que hemos puesto un número a la impresora. Se puede asignar un número cualquiera a cada evento unitario que nos interese. Así podríamos para el actual mantenimiento analizar otra vez los otros costos. Solo el conjunto solución esta determinado. Se podría calcular ahora la probabilidad de que el resultado sea 60 euros: hay diez eventos elementales y dos de ellos corresponden a 60 euros. También calculamos la probabilidad de 2/10.
Representamos a una variable aleatoria con una letra mayúscula. El valor que pueda obtener la variable aleatoria la denotamos con una letra minúscula. Llamamos a nuestra variable aleatoria X como "costo de reparación". Ahora resumimos las diferentes probabilidades de la variable aleatoria X en una tabla de probabilidades. El señor Printzig tiene ahora el chance cuatro veces de pagar 30 euros ya que la probabilidad de X = 30 es igual a 4/10.





Tabla de Probabilidades:
x1 x2 x3 x4
valor xi 30 50 60 100
probabilidad f(xi) 0,4 0,3 0,2 0,1



f(x) representa un valor determinado de la variable aleatoria x de la probabilidad. En un ejemplo:

Función de probabilidad de X:costos de reparación
P(X = 60) = f(x3) = F(60) = 0,2
pero
P(X = 70) = f(70) = 0
pues para X = 70 no existe un resultado.
La suma de todas las probabilidades es
\sum_{i=1}^m f(x_i) =1 \;
Se puede representar esta probabilidad también gráficamente a través de un diagrama de barras.
Se puede ver que en el puesto de las X: 30, 50, 60, 100 el valor de la función de probabilidad es 0.4, 0.3, 0.2, 0.1 y para todos los demás valores es cero.
Pero ahora cuán grande es la probabilidad de que tenga que pagar el señor Printzig más de 50 euros?

Probabilidad de que X sea menor o igual que 50
P(X ≤ 50) = P(X = 30) + P(X = 50) = 0,4 + 0,3 = 0,7.
Se puede deducir del gráfico también: la suma de las barras de x ≤ 50.
Con que probabilidad debe pagar el sr. Printzig menos de 100 euros?. La pregunta aquí es P(X < 100). Una mirada al gráfico nos acusa del valor:

Probabilidad X < 100
P(X < 100) = P(X ≤ 60) = P(X = 30) + P(X = 50) + P(X = 60) = 0,4 + 0,3 + 0,2 = 0,9.
Cuánto es la probabilidad de que sea menor o igual que 60 pero mayor que 30?
Se podría seguir calculando por el método de barras:
P(30 < X ≤ 60) = 0,3 + 0,2 = 0,5.
Pero hay otras formas de calcular esto que se puede reconocer por ayuda del gráfico:
P(a < X ≤ b) = P(X ≤ b) - P(X ≤ a),
por lo que sería
P(30 < X ≤ 60) = P(X ≤ 60) - P(X ≤ 30) = 0,9 - 0,4 = 0,5.
La probabilidad P(X ≤ a) de un determinado valor a de X constituye la función de distribución de X. La distribución de probabilidad de X describe una manera definida. Esta es una convención que se encuentran los estadistas sin sentido. La función de distribución se la representa con la letra mayúscula así F(a). En vez de a se acostumbra escribir el símbolo x. Queremos construir la función de distribución teniendo como ayuda el gráfico que antes mencionamos y para calcular el valor de ayuda x de la función de distribución.
Cuán grande es P(X ≤ 10)? La respuesta es P(X ≤ 10) = F(10) = 0.
Aunque también P(X ≤ 15) = 0 Y P(X ≤ 20) = 0.
F(a) = 0 para todos los valores de a en el intervalo - ∞ < a < 30.
Finalmente analicemos P(X ≤ 30):
P(X ≤ 30) = F(30) = 0,4. Aunque también es P(X ≤ 30,1) = 0,4 y P(X ≤ 49,99999) = 0,4.
La función de distribución tiene el valor F(a) = 0,4 para 30 ≤ a < 50.
Tiene los valores de: P(X ≤ 50), P(X ≤ 59), ... P(X ≤ 60); observando el gráfico 0,4 + 0,3 = 0,7.
...
Finalmente, la probabilidad es P(X ≤ 100) o también P(X ≤ 110), P(X ≤ 1000).... igual a 1.
Podemos resumir la probabilidad con la función de distribución

Función de distribución de X: Costos de reparación
P(X \le a) = F(a) = \begin{cases} 0 & \mbox{para } a < 30 \\ 
0,4 & \mbox{para } 30 \le a < 50 \\ 
0,7 & \mbox{para } 50 \le a < 60\\ 
0,9 & \mbox{para } 60 \le a < 100\\ 
1 & \mbox{para } a \ge 100 \end{cases}
Se observa que la función de distribución representa graficamente a una función escalonada. Los puntos de la izquierda de los "escalones" muestran que los valores de las funciones pertenecen exactamente a esos valores de la escalera.
Se puede sacar también la probabilidad del gráfico, por ejemplo P(X ≤ 70) = 0,9.
En una variable aleatoria nos interesamos particularmente en dos valores conocidos, llamados parametros, que describen exactamente a las variables aleatorias.
Uno es un valor promedio, que supone una variable aleatoria a largo plazo, cuando se ejecuta muy seguido sucesos aleatorios. Este parametro se lo llama valor esperado (E), siendo el valor que se espera a largo plazo. Lo habiamos ya encontrado anteriormente como el costo promedio de las reparaciones asi:
E = 50 \cdot  \frac{3}{10} + 60 \cdot  \frac{2}{10} + 30 \cdot  \frac{4}{10} + 100 \cdot  \frac{1}{10} = 49 \;
Otro parametro es la dispersión de X, una medida de que tan dispersos estan los valores de X cercanos al valor esperado. Asi por ejemplo, de 100 es mas raro que ocurra que de 30, en comparación con la dispersión de su probabilidad. Al elevar al cuadrado esta desviación conseguimos que los valores no sean desproporcionados. Se mantiene en la solución como una desviación cuadrática del valor X de la varianza E
 varX = (30-49)^2 \cdot 0,4 + (50-49)^2 \cdot 0,3 + (60-49)^2 \cdot 0,2 + (100-49)^2 \cdot 0,1
 = 361 \cdot  0,4 + 1 \cdot  0,3 + 121 \cdot  0,2 + 2601 \cdot  0,1 = 429
donde se debe poner atención que aquí resulta la unidad E2.
Hay que indicar que la raiz de la varianza es la desviación estándar.


Estadística/Variables aleatorias discretas

Una variable aleatoria que toma un número finito o contable infinito de valores se llama una variable aleatoria discreta mientras que una que toma un número de valores infinito no contable recibe el nombre de variable aleatoria continua 

.

No hay comentarios :

Publicar un comentario

DEJA TU COMENTARIOS CON TUS DUDAS Y SUGERENCIAS,ASI COMO TAMBIEN UN PEDIDO EN PARTICULAR.
TAMBIEN PUEDES TU CORREO ELECTRONICO PARA UNA RESPUESTA MAS RAPIDA.